Home Nanotechnology Exosome-based engineering methods for the prognosis and therapy of oral and maxillofacial ailments | Journal of Nanobiotechnology

Exosome-based engineering methods for the prognosis and therapy of oral and maxillofacial ailments | Journal of Nanobiotechnology

0
Exosome-based engineering methods for the prognosis and therapy of oral and maxillofacial ailments | Journal of Nanobiotechnology

[ad_1]

  • Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. Oral ailments: a worldwide public well being problem. Lancet. 2019;394:249–60.

    Article 
    PubMed 

    Google Scholar
     

  • Im SH, Kim CY, Jung Y, Jang Y, Kim SH. Biodegradable vascular stents with excessive tensile and compressive power: a novel technique for making use of monofilaments through solid-state drawing and shaped-annealing processes. Biomater Sci. 2017;5:422–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veneruso V, Rossi F, Villella A, Bena A, Forloni G, Veglianese P. Stem cell paracrine impact and supply methods for spinal twine damage regeneration. J Management Launch. 2019;300:141–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan B-T, Johnstone RM. Destiny of the transferrin receptor throughout maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33:967–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177:428-445.e18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • File M, Carayon Okay, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters concerned in cell–cell communication and varied pathophysiologies. Biochim et Biophys Acta (BBA) – Mol Cell Biol Lipids. 2014;1841:108–20.

    CAS 

    Google Scholar
     

  • Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, et al. Exosomes: the following era of endogenous nanomaterials for superior drug supply and remedy. Acta Biomater. 2019;86:1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao C, Music F, Zheng YL, Lv J, Wang QF, Xu N. Exosomes in head and neck squamous cell carcinoma. Entrance Oncol. 2019;9:894.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dang S-Y, Leng Y, Wang Z-X, Xiao X, Zhang X, Wen T, et al. Exosomal switch of weight problems adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci. 2019;15:351–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and mates. J Cell Biol. 2013;200:373–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a subsequent era therapeutic instrument? Cell Demise Dis. 2022;13:580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waldenström A, Ronquist G. Position of exosomes in myocardial reworking. Circ Res. 2014;114:315–24.

    Article 
    PubMed 

    Google Scholar
     

  • Hannafon BN, Gin AL, Xu Y-F, Bruns M, Calloway CL, Ding W-Q. Metastasis-associated protein 1 (MTA1) is transferred by exosomes and contributes to the regulation of hypoxia and estrogen signaling in breast most cancers cells. Cell Commun Sign. 2019;17:13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Distler JHW, Huber LC, Homosexual S, Distler O, Pisetsky DS. Microparticles as mediators of mobile cross-talk in inflammatory illness. Autoimmunity. 2006;39:683–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Freitas D, Kim HS, Fabijanic Okay, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by uneven circulate field-flow fractionation. Nat Cell Biol. 2018;20:332–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heneberg P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol. 2016;97:303–11.

    Article 
    PubMed 

    Google Scholar
     

  • Bang C, Thum T. Exosomes: new gamers in cell–cell communication. Int J Biochem Cell Biol. 2012;44:2060–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, perform, and biomedical functions of exosomes. Science. 2020;367:eaau6977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Den Boorn JG, Schlee M, Coch C, Hartmann G. SiRNA supply with exosome nanoparticles. Nat Biotechnol. 2011;29:325–6.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a evaluate of its classification, isolation methods, storage. Diagn Goal Ther Appl IJN. 2020;15:6917–34.

    CAS 

    Google Scholar
     

  • Schiffelers R, Kooijmans S, Van Vader D, Van Solinge WW. Exosome mimetics: a novel class of drug supply techniques. IJN. 2012;7:1525–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New applied sciences for evaluation of extracellular vesicles. Chem Rev. 2018;118:1917–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao S-C, Guo S-C, Li M, Ke Q-F, Guo Y-P, Zhang C-Q. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells present sustained launch of exosomes and heal full-thickness pores and skin defects in a diabetic rat mannequin. Stem Cells Transl Med. 2016;6(3):736–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Feng Y, Zheng X, Jia M, Mei Z, Wang Y, et al. M2-type exosomes nanoparticles for rheumatoid arthritis remedy through macrophage re-polarization. J Management Launch. 2022;341:16–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, et al. Melatonin-stimulated MSC-derived exosomes enhance diabetic wound therapeutic by way of regulating macrophage M1 and M2 polarization by focusing on the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11:259.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu M, Liu W, Li J, Lu J, Lu H, Jia W, et al. Exosomes derived from atorvastatin-pretreated MSC speed up diabetic wound restore by enhancing angiogenesis through AKT/eNOS pathway. Stem Cell Res Ther. 2020;11:350.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi H, Xu X, Zhang B, Xu J, Pan Z, Gong A, et al. 3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical twine mesenchymal stem cells to reinforce wound therapeutic. Theranostics. 2017;7:1674–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wu H, Peng Y, Zhao Y, Qin Y, Zhang Y, et al. Hypoxia adipose stem cell-derived exosomes promote high-quality therapeutic of diabetic wound includes activation of PI3K/Akt pathways. J Nanobiotechnol. 2021;19:202.

    Article 
    CAS 

    Google Scholar
     

  • Solar D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug supply system: the anti-inflammatory exercise of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, et al. Analysis of electroporation-induced hostile results on adipose-derived stem cell exosomes. Cytotechnology. 2016;68:2125–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug supply automobiles for Parkinson’s illness remedy. J Management Launch. 2015;207:18–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue H, Yuan L, Zhang W, Zhang S, Wei W, Ma G. Macrophage responses to the bodily burden of cell-sized particles. J Mater Chem B. 2018;6:393–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, et al. Massive-scale era of purposeful mRNA-encapsulating exosomes through mobile nanoporation. Nat Biomed Eng. 2019;4:69–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated supply of Cas9 ribonucleoprotein complexes for tissue-specific gene remedy of liver ailments. Sci Adv. 2022;8:eabp9435.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao S, Xiao C, Miao Y, Wang J, Chen R, Fan Z, et al. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound therapeutic. Stem Cell Res Ther. 2021;12:255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao S-C, Guo S-C, Li M, Ke Q-F, Guo Y-P, Zhang C-Q. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells present sustained launch of exosomes and heal full-thickness pores and skin defects in a diabetic rat mannequin. Stem Cells Transl Med. 2017;6:736–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound therapeutic. Biomaterials. 2020;249:120020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, et al. Dynamically bioresponsive DNA hydrogel included with dual-functional stem cells from apical papilla-derived exosomes promotes diabetic bone regeneration. ACS Appl Mater Interfaces. 2022;14:16082–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao H, Chen M, Cui X, Liu Y, Liu Y, Deng S, et al. Cell-free osteoarthritis therapy with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate getting old chondrocytes. ACS Nano. 2023;17:13358–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal ailments. Nat Rev Dis Primers. 2017;3:17038.

    Article 
    PubMed 

    Google Scholar
     

  • Haritha A, Jayakumar A. Syndromes as they relate to periodontal illness. Periodontol. 2000;2011(56):65–86.


    Google Scholar
     

  • Ghallab NA. Diagnostic potential and future instructions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases_ evaluate of the present proof. Arch Oral Biol. 2018;87:115–24.

    Article 
    PubMed 

    Google Scholar
     

  • Tobón-Arroyave SI, Celis-Mejía N, Córdoba-Hidalgo MP, Isaza-Guzmán DM. Decreased salivary focus of CD 9 and CD 81 exosome-related tetraspanins could also be related to the periodontal scientific standing. J Clin Periodontol. 2019;46:470–80.

    Article 
    PubMed 

    Google Scholar
     

  • Chaparro Padilla A, Weber Aracena L, Realini Fuentes O, Albers Busquetts D, Hernández Ríos M, Ramírez Lobos V, et al. Molecular signatures of extracellular vesicles in oral fluids of periodontitis sufferers. Oral Dis. 2020;26:1318–25.

    Article 
    PubMed 

    Google Scholar
     

  • Yu J, Lin Y, Xiong X, Li Okay, Yao Z, Dong H, et al. Detection of exosomal PD-L1 RNA in saliva of sufferers with periodontitis. Entrance Genet. 2019;10:202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Y, Zhou Okay, Solar M, Shu R, Qian J, Xie Y. The miR-223-3p regulates pyroptosis by way of NLRP3-Caspase 1-GSDMD sign axis in periodontitis. Irritation. 2021;44:2531–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han P, Bartold PM, Salomon C, Ivanovski S. Salivary small extracellular vesicles related miRNAs in periodontal standing—a pilot examine. IJMS. 2020;21:2809.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang X, Wang J, Zhang Y, Ye Q, Wang Y, et al. Inflammatory periodontal ligament stem cells drive M1 macrophage polarization through exosomal miR-143-3p-mediated regulation of PI3K/AKT/NF-κB signaling. Stem Cells. 2023;41:184–99.

    Article 
    PubMed 

    Google Scholar
     

  • Lin C, Yang Y, Wang Y, Jing H, Bai X, Hong Z, et al. Periodontal ligament fibroblasts-derived exosomes induced by PGE2 inhibit human periodontal ligament stem cells osteogenic differentiation through activating miR-34c-5p/SATB2/ERK. Exp Cell Res. 2022;419:113318.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X-Y, Tian B-M, Xia Y, Xia Y-L, Li X, Zhou H, et al. Exosomes derived from P2X7 receptor gene-modified cells rescue inflammation-compromised periodontal ligament stem cells from dysfunction. Stem Cells Transl Med. 2020;9:1414–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan C, Li N, Xiao T, Ye X, Fu L, Ye Y, et al. Extracellular vesicles from the inflammatory microenvironment regulate the osteogenic and odontogenic differentiation of periodontal ligament stem cells by miR-758-5p/LMBR1/BMP2/4 axis. J Transl Med. 2022;20:208.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo H, Chen D, Li R, Li R, Teng Y, Cao Y, et al. Genetically engineered CXCR4-modified exosomes for supply of miR-126 mimics to macrophages alleviate periodontitis. J Nanobiotechnol. 2023;21:116.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y, Zhang B, Yang Y, Peng B, Ye R. PLGA containing human adipose-derived stem cell-derived extracellular vesicles accelerates the restore of alveolar bone defects through switch of CGRP. Oxid Med Cell Longev. 2022;2022:1–14.


    Google Scholar
     

  • Zhang Y, Chen J, Fu H, Kuang S, He F, Zhang M, et al. Exosomes derived from 3D-cultured MSCs enhance therapeutic results in periodontitis and experimental colitis and restore the Th17 cell/Treg steadiness in infected periodontium. Int J Oral Sci. 2021;13:43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Z, Kuang S, Zhang Y, Yang M, Qin W, Shi X, et al. Chitosan hydrogel included with dental pulp stem cell-derived exosomes alleviates periodontitis in mice through a macrophage-dependent mechanism. Bioact Mater. 2020;5:1113–26.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, et al. Mesenchymal stem cell exosomes improve periodontal ligament cell features and promote periodontal regeneration. Acta Biomater. 2019;89:252–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sui B, Chen C, Kou X, Li B, Xuan Okay, Shi S, et al. Pulp stem cell-mediated purposeful pulp regeneration. J Dent Res. 2019;98:27–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed GM, Abouauf EA, AbuBakr N, Dörfer CE, El-Sayed KF. Tissue engineering approaches for enamel, dentin, and pulp regeneration: an replace. Stem Cells Int. 2020;2020:1–15.

    Article 

    Google Scholar
     

  • Chen WJ. The position of small extracellular vesicles derived from lipopolysaccharide-preconditioned human dental pulp stem cells in dental pulp regeneration. J Endod. 2021;47(6):961–9.

    Article 
    PubMed 

    Google Scholar
     

  • Liu P, Qin L, Liu C, Mi J, Zhang Q, Wang S, et al. Exosomes derived from hypoxia-conditioned stem cells of human deciduous exfoliated enamel improve angiogenesis through the switch of let-7f-5p and miR-210-3p. Entrance Cell Dev Biol. 2022;10:879877.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Kong Y, Hu X, Li Z, Li Y, Zhong Y, et al. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and selling odontogenesis. Stem Cell Res Ther. 2020;11:517.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Xing X, Peng W, Huang C, Du Y, Yang H, et al. Fabrication of an exosome-loaded thermosensitive chitin-based hydrogel for dental pulp regeneration. J Mater Chem B. 2023;11:1580–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Ju Y, Liu S, Fu Y, Zhao S. Exosomes derived from lipopolysaccharide-preconditioned human dental pulp stem cells regulate Schwann cell migration and differentiation. Join Tissue Res. 2021;62:277–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siéssere S, Vitti M, Semprini M, Regalo SCH, Iyomasa MM, Dias FJ, et al. Macroscopic and microscopic features of the temporomandibular joint associated to its scientific implication. Micron. 2008;39:852–8.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhang Z, Wang B, Dong Y, Zhao C, Zhao Y, et al. Irritation-stimulated MSC-derived small extracellular vesicle miR-27b-3p regulates macrophages by focusing on CSF-1 to advertise temporomandibular joint condylar Regeneration. Small. 2022;18:2107354.

    Article 
    CAS 

    Google Scholar
     

  • Received Lee G, Thangavelu M, Joung Choi M, Yeong Shin E, Sol Kim H, Seon Baek J, et al. Exosome mediated switch of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage restore and regeneration. J Cell Biochem. 2020;121:3642–52.

    Article 
    PubMed 

    Google Scholar
     

  • Lang NP, Berglundh T, on Behalf of Working Group 4 of the Seventh European Workshop on Periodontology. Periimplant ailments: the place are we now? – Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol. 2011;38:178–81.

    Article 
    PubMed 

    Google Scholar
     

  • Lindhe J, Meyle J, on behalf of Group D of the European Workshop on Periodontology. Peri-implant ailments: consensus report of the sixth European workshop on periodontology. J Clinic Periodontol. 2008;35:282–5.

    Article 

    Google Scholar
     

  • Chaparro A, Atria P, Realini O, Monteiro LJ, Betancur D, Acuña-Gallardo S, et al. Diagnostic potential of peri-implant crevicular fluid microRNA-21-3p and microRNA-150-5p and extracellular vesicles in peri-implant ailments. J Periodontol. 2021;92(6):11–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Qiao S-C, Wu X-B, Solar B, Yang J-G, Li X, et al. Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption by way of m6A methylation. Cell Demise Dis. 2021;12:628.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Xu R, Yang Y, Liang C, Yu X, Liu Y, et al. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to enhance osseointegration. J Nanobiotechnol. 2021;19:78.

    Article 
    CAS 

    Google Scholar
     

  • Xu H, Chai Q, Xu X, Li Z, Bao W, Man Z, et al. Exosome-functionalized Ti6Al4V scaffolds selling osseointegration by modulating endogenous osteogenesis and osteoimmunity. ACS Appl Mater Interfaces. 2022;14:46161–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Liu Z, Xu S, Ma X, Zhao Z, Hu H, et al. A drug supply system constructed by a fusion peptide capturing exosomes targets to titanium implants precisely ensuing the enhancement of osseointegration peri-implant. Biomater Res. 2022;26:89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, et al. Identification of potential saliva and tear biomarkers in major Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics evaluation. Arthritis Res Ther. 2017;19:14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashiro Okay, Hamada T, Mori Okay, Nishi Okay, Nakamura M, Beppu M, et al. Exosome-derived microRNAs from mouthrinse have the potential to be novel biomarkers for Sjögren syndrome. JPM. 2022;12:1483.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortes-Troncoso J, Jang S-I, Perez P, Hidalgo J, Ikeuchi T, Greenwell-Wild T, et al. T cell exosome–derived miR-142-3p impairs glandular cell perform in Sjögren’s syndrome. JCI Perception. 2020;5:e133497.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A. Pathogenesis of oral lichen planus – a evaluate: pathogenesis of oral lichen planus. J Oral Pathol Med. 2010;39:729–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Zhang J, Lu R, Tan Y, Du G, Zhou G. T cell–derived exosomes induced macrophage inflammatory protein-1α/β drive the trafficking of CD8 + T cells in oral lichen planus. J Cell Mol Med. 2020;24:14086–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byun J, Hong S, Choi J, Jung J, Lee H. Diagnostic profiling of salivary exosomal micro RNA s in oral lichen planus sufferers. Oral Dis. 2015;21:987–93.

    Article 
    PubMed 

    Google Scholar
     

  • Peng Q, Zhang J, Zhou G. Differentially circulating exosomal microRNAs expression profiling in oral lichen planus. Am J Transl Res. 2018;10(9):2848–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez M-P, Kadlub N, Soupre V, Galliani E, Neiva-Vaz C, Pavlov I, et al. Plaies et traumatismes de la face de l’enfant. Annales de Chirurgie Plastique Esthétique. 2016;61:543–59.

    Article 

    Google Scholar
     

  • Wang Z-C, Zhao W-Y, Cao Y, Liu Y-Q, Solar Q, Shi P, et al. The roles of irritation in keloid and hypertrophic scars. Entrance Immunol. 2020;11:603187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su D, Tsai H, Xu Z, Yan F, Wu Y, Xiao Y, et al. Exosomal PD-L1 features as an immunosuppressant to advertise wound therapeutic. J Extracell Vesicle. 2020;9:1709262.

    Article 
    CAS 

    Google Scholar
     

  • Harting MT, Srivastava AK, Zhaorigetu S, Bair H, Prabhakara KS, Toledano Furman NE, et al. Irritation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate irritation. Stem Cells. 2018;36:79–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for decision of continual irritation through exosome-shuttled let-7b. J Transl Med. 2015;13:308.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Born LJ, Chang Okay, Shoureshi P, Lay F, Bengali S, Hsu ATW, et al. HOTAIR-loaded mesenchymal stem/stromal cell extracellular vesicles improve angiogenesis and wound therapeutic. Adv Healthcare Mater. 2022;11:2002070.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Wang Y, Shi L, Li B, Li J, Wei Z, et al. Magnetic focusing on enhances the cutaneous wound therapeutic results of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnol. 2020;18:113.

    Article 
    CAS 

    Google Scholar
     

  • Kim S, Kim Y, Hyun Y-S, Choi H, Kim S-Y, Kim T-G. Exosomes from human twine blood plasma speed up cutaneous wound therapeutic by selling fibroblast perform, angiogenesis, and M2 macrophage differentiation. Biomater Sci. 2021;9:3028–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Cao Z, Wei Q, Ma Okay, Hu W, Huang Q, et al. VH298-loaded extracellular vesicles launched from gelatin methacryloyl hydrogel facilitate diabetic wound therapeutic by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater. 2022;147:342–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer AJ. Cutaneous wound therapeutic. New Engl J Med. 1999;341(10):738–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, et al. The MSC-derived Exosomal lncRNA H19 promotes wound therapeutic in diabetic foot ulcers by upregulating PTEN through MicroRNA-152-3p. Mol Ther—Nucleic Acids. 2020;19:814–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai S, Deng L, Liu C, Li X, Fan L, Zhu Y, et al. Bone marrow mesenchymal stem cell-derived exosomes loaded with miR-26a by way of the novel immunomodulatory peptide DP7-C can promote osteogenesis. Biotechnol Lett. 2023;45:905–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Li X, Gan X, Wei M, Wang C, Yang G, et al. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnol. 2023;21:119.

    Article 
    CAS 

    Google Scholar
     

  • Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids improve osteogenic induction and vascular reworking in massive segmental bone defects. Theranostics. 2021;11:397–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Yu F, Li L, Zhou L, Zhou T, Xu Y, et al. Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: launch of exosomal miR-146a regulates osteogenesis and angiogenesis. Acta Biomater. 2021;119:444–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kademani D. Oral most cancers. Mayo Clin Proc. 2007;82:878–87.

    Article 
    PubMed 

    Google Scholar
     

  • Thomson PJ. Views on oral squamous cell carcinoma prevention—proliferation, place, development and prediction. J Oral Pathol Med. 2018;47:803–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular options of oral fluid-derived exosomes: oral most cancers sufferers versus wholesome people. J Most cancers Res Clin Oncol. 2016;142:101–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bigagli E, Locatello LG, Maggiore G, Valdarnini F, Bambi F, Gallo O, et al. Extracellular vesicles miR-­210 as a possible biomarker for prognosis and survival prediction of oral squamous cell carcinoma sufferers. J Oral Pathol Med. 2022;51(4):350–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He T, Guo X, Li X, Liao C, Wang X, He Okay. Plasma-derived exosomal microRNA-130a serves as a noninvasive biomarker for prognosis and prognosis of oral squamous cell carcinoma. J Oncol. 2021;2021:1–9.

    CAS 

    Google Scholar
     

  • Faur CI, Roman RC, Jurj A, Raduly L, Almășan O, Rotaru H, et al. Salivary exosomal MicroRNA-486-5p and MicroRNA-10b-5p in oral and oropharyngeal squamous cell carcinoma. Medicina. 2022;58:1478.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel A, Patel S, Patel P, Mandlik D, Patel Okay, Tanavde V. Salivary exosomal miRNA-1307-5p predicts illness aggressiveness and poor prognosis in oral squamous cell carcinoma sufferers. IJMS. 2022;23:10639.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coon J, Kingsley Okay, Howard KM. miR-365 (microRNA): potential biomarker in oral squamous cell carcinoma exosomes and extracellular vesicles. Int J Mol Sci. 2020;21(15):5317.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gai C, Camussi F, Broccoletti R, Gambino A, Cabras M, Molinaro L, et al. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Most cancers. 2018;18:439.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He L, Ping F, Fan Z, Zhang C, Deng M, Cheng B, et al. Salivary exosomal miR-24-3p serves as a possible detective biomarker for oral squamous cell carcinoma screening. Biomed Pharmacother. 2020;121:109553.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Li Z, Liang J, Liu J, Hao J, Wan Q, et al. CircRNA has_circ_0069313 induced OSCC immunity escape by miR-325-3p-Foxp3 axes in each OSCC cells and Treg cells. Growing older. 2022;14:4376–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Q, Chen Y, Lin L, Lin J, Wang H, Qiu Y, et al. Exosomal hsa_circRNA_047733 built-in with scientific options for preoperative prediction of lymph node metastasis danger in oral squamous cell carcinoma. J Oral Pathol Med. 2023;52:37–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Medical significance of PD-L1 Exosomes in plasma of head and neck most cancers sufferers+. Clin Most cancers Res. 2018;24(4):896–905.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Liou G, Liu S, Chang JS, Hsiao J, Yen Y, et al. Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells improve in vitro lymphangiogenesis through integrin α3-dependent uptake by lymphatic endothelial cells. Intl J Most cancers. 2019;144:2795–810.

    Article 
    CAS 

    Google Scholar
     

  • Li C, Zhou Y, Liu J, Su X, Qin H, Huang S, et al. Potential markers from serum-purified exosomes for detecting oral squamous cell carcinoma metastasis. Most cancers Epidemiol Biomark Prev. 2019;28:1668–81.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells ship miR-21 to normoxic cells to elicit a prometastatic phenotype. Can Res. 2016;76:1770–80.

    Article 
    CAS 

    Google Scholar
     

  • Deng W, Meng Y, Wang B, Wang C-X, Hou C-X, Zhu Q-H, et al. In vitro experimental examine on the formation of microRNA-34a loaded exosomes and their inhibitory impact in oral squamous cell carcinoma. Cell Cycle. 2022;21:1775–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kase Y, Uzawa Okay, Wagai S, Yoshimura S, Yamamoto J-I, Toeda Y, et al. Engineered exosomes delivering particular tumor-suppressive RNAi attenuate oral most cancers development. Sci Rep. 2021;11:5897.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayyed AA, Gondaliya P, Mali M, Pawar A, Bhat P, Khairnar A, et al. MiR-155 inhibitor-laden exosomes reverse resistance to cisplatin in a 3D tumor spheroid and xenograft mannequin of oral most cancers. Mol Pharm. 2021;18:3010–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Xiao Q, Yin H, Xia C, Pu Y, He Z, et al. Milk-exosome primarily based pH/gentle delicate drug system to reinforce anticancer exercise in opposition to oral squamous cell carcinoma. RSC Adv. 2020;10:28314–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamerkar S, Leng C, Burenkova O, Jang SC, McCoy C, Zhang Okay, et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 results in potent monotherapy antitumor exercise. Sci Adv. 2022;8:eabj7002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here